

CPEC

imprs-is

Adrián Javaloy

NeurIPS 2023 - Oral

1

Observational data

Observational data

"Will I get my health insurance application approved?"

"Will I get my health insurance application approved?"

"Will I get my health insurance application approved?"

"I got my application rejected. Would I have gotten it if I were younger?"

Observational data

Interventional/counterfactual data

Observational data

Interventional/counterfactual data

How to approach this problem...

How to approach this problem...

1. Model each variable individually: E.g.: a linear function, spline, GP¹, NN², ...

× Independent functions 🛛 🗸 Straightforward

× No amortization ✓ Causally consistent

× Seq. error propagation ✓ Easy do-operator

Karimi, Amir-Hossein, et al. "Algorithmic recourse under imperfect causal knowledge: a probabilistic approach." Advances in neural information processing systems 33 (2020): 265-277.
 Parafita, Álvaro, and Jordi Vitrià. "Estimand-Agnostic Causal Query Estimation With Deep Causal Graphs." IEEE Access 10 (2022): 71370-71386.

How to approach this problem...

1. Model each variable individually: E.g.: a linear function, spline, GP¹, NN², ...

× Independent functions 🛛 🗸 Straightforward

× No amortization ✓ Causally consistent

× Seq. error propagation

✓ Easy do-operator

- 2. Model the SCM with a Deep Neural Network. E.g.: VACA,¹ CAREFL,² ...
- ✓ Expressive
 × Without guarantees

Parameter amortization × Complex NN training

 ✓ Parallel computations do-operator

Karimi, Amir-Hossein, et al. "Algorithmic recourse under imperfect causal knowledge: a probabilistic approach." Advances in neural information processing systems 33 (2020): 265-277.
 Parafita, Álvaro, and Jordi Vitrià. "Estimand-Agnostic Causal Query Estimation With Deep Causal Graphs." IEEE Access 10 (2022): 71370-71386.

[3] Sánchez-Martin, P., M. Rateike, and I. Valera. "VACA: Designing Variational Graph Autoencoders for Causal Queries". Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no.
 [4] Khemakhem, Ilyes, et al. "Causal autoregressive flows." International conference on artificial intelligence and statistics. PMLR, 2021.

× Inexact

Causal Normalizing Flows:

- Straightforward
- ✓ Causally consistent
- ✓ Easy do-operator

- Expressive
 - ✓ Parameter amortization
 - ✓ Parallel computations

Causal Normalizing Flows:

In a nutshell

Causal Normalizing Flow

Causal normalizing flows: from theory to practice

Normalizing Flow

Causal

In a nutshell

Observational data

 $\{x_1, x_2, x_3, x_4\}$

Capabilities

1. Generate observational data.

UNIVERSITÄT DES SAARLANDES

In a nutshell

Capabilities

2. Generate interventional data.

3. Generate counterfactual data.

In a nutshell

Observational data

Interventional/counterfactual data

Capabilities

- 1. Generate observational data.
- 2. Generate interventional data.
- 3. Generate counterfactual data.

German Credit - Checking account

Generate interventional data. Generate counterfactual data.

1. Fit the observed data accurately.

Objectives

Interventional/counterfactual data

 $\{x_1, \alpha, x_3, x_4\}$

Causal

Normalizing

In a nutshell

1.

2.

3.

Generate observational data.

Capabilities

UNIVERSITÄT DES SAARLANDES

Flow Observational data Capabilities Fit the observed data accurately. 1. Identify the exogenous variables. 2.

Interventional/counterfactual data

 $\{x_1, \alpha, x_3, x_4\}$

Objectives

Causal

Normalizing

Causal

In a nutshell

- Generate observational data. 1.
- Generate interventional data. 2.
- Generate counterfactual data. 3.

3. Ensure causal consistency wrt. the true SCM.

Invertible & differentiable generators						
f						

1.

Fit the observed data <u>accurately</u>.

SCM→Structural Causal Model

1. Fit the observed data <u>accurately</u>.

SCM→Structural Causal Model ANF→Aut. Normalizing Flow

UNIVERSITÄT DES SAARLANDES

ANFs:

- Invertible differentiable neural networks.
- Transform random variables, $T_{\theta}(\mathbf{x}) =: \mathbf{u} \sim P_{\mathbf{u}}$.
- Autoregressive and monotonic.

1. Fit the observed data <u>accurately</u>.

SCM→Structural Causal Model ANF→Aut. Normalizing Flow TMI→Triangular Monotonic Incr. Map

Triangular Monotonic Increasing (TMI) maps.

$$f(x) = \begin{bmatrix} f_1(x_1) \\ f_2(x_1, x_2) \\ \vdots \\ f_d(x_1, \dots, x_d) \end{bmatrix}$$

 $\partial_{\mathbf{x}_i} f_i(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_i) \ge 0$

Fit the observed data <u>accurately</u>. 1.

SCM→Structural Causal Model ANF→Aut. Normalizing Flow TMI→Triangular Monotonic Incr. Map

Triangular Monotonic Increasing (TMI) maps.

1. Fit the observed data <u>accurately</u>.

SCM→Structural Causal Model ANF→Aut. Normalizing Flow TMI→Triangular Monotonic Incr. Map

Triangular Monotonic Increasing (TMI) maps.

$$f(x) = \begin{bmatrix} f_1(x_1) \\ f_2(x_1, x_2) \\ \vdots \\ f_d(x_1, \dots, x_d) \end{bmatrix}$$
$$\partial_{\mathbf{x}_i} f_i(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_i) \ge 0$$

SCM ANF TMI TMI

> ANFs are TMI maps and universal approximators of any other TMI map.

SCM→Structural Causal Model ANF→Aut. Normalizing Flow TMI→Triangular Monotonic Incr. Map

UNIVERSITÄT DES SAARLANDES

Isolating the exogenous variables

2. <u>Identify</u> the exogenous variables.

$\mathcal{F} imes \mathcal{P}_{\mathbf{u}}$ – Family of TMI maps with fully-factorized distributions.

Theorem 1 (Identifiability). If two elements of the family $\mathcal{F} \times \mathcal{P}_{\mathbf{u}}$ (as defined above) produce the same observational distribution, then the two data-generating processes differ by an invertible, component-wise transformation of the variables \mathbf{u} .

[1] Xi, Quanhan, and Benjamin Bloem-Reddy. "Indeterminacy in generative models: Characterization and strong identifiability." International Conference on Artificial Intelligence and Statistics. PMLR, 2023.

Isolating the exogenous variables

2. <u>Identify</u> the exogenous variables.

$\mathcal{F} imes \mathcal{P}_{\mathbf{u}}$ – Family of TMI maps with fully-factorized distributions.

Theorem 1 (Identifiability). If two elements of the family $\mathcal{F} \times \mathcal{P}_{\mathbf{u}}$ (as defined above) produce the same observational distribution, then the two data-generating processes differ by an invertible, component-wise transformation of the variables \mathbf{u} .

[1] Xi, Quanhan, and Benjamin Bloem-Reddy. "Indeterminacy in generative models: Characterization and strong identifiability." International Conference on Artificial Intelligence and Statistics. PMLR, 2023.

Isolating the exogenous variables

2. <u>Identify</u> the exogenous variables.

$\mathcal{F} imes \mathcal{P}_{\mathbf{u}}$ – Family of TMI maps with fully-factorized distributions.

Theorem 1 (Identifiability). If two elements of the family $\mathcal{F} \times \mathcal{P}_{\mathbf{u}}$ (as defined above) produce the same observational distribution, then the two data-generating processes differ by an invertible, component-wise transformation of the variables \mathbf{u} .

[1] Xi, Quanhan, and Benjamin Bloem-Reddy. "Indeterminacy in generative models: Characterization and strong identifiability." International Conference on Artificial Intelligence and Statistics. PMLR, 2023.

Causal consistency

3. Ensure causal consistency wrt. the true SCM.

Causal consistency

3. Ensure causal consistency wrt. the true SCM.

Causal normalizing flows: from theory to practice

3. Ensure causal consistency wrt. the true SCM.

Causal consistency

3. Ensure causal consistency wrt. the true SCM.

x

Ш

Generative

11

 \mathbf{x}

 \mathbf{X}

Recursive

х

u

Causal consistency

 $\begin{cases} x_1 = \tilde{f}_1(u_1) \\ x_2 = \tilde{f}_2(x_1, u_2) \\ x_3 = \tilde{f}_3(x_1, u_3) \end{cases}$

х

Abductive

u

х

 \mathbf{X}

u

Causal consistency

u

 \mathbf{x}

Х

Causal consistency

Causal Normalizing

Flow

Abductive

 \mathbf{X}

In theory... ANF + causal ordering is enough.

ANF + causal ordering is enough.

... but in practice ... Neural networks 🎔 local optima.

In theory...

Theory vs. practice

In theory... ANF + causal ordering is enough.

… but in practice … Neural networks ♥ local optima.

Wait! With **G** we can design a causally consistent network!

Network design

3. Ensure causal consistency wrt. the true SCM.

	_	Design Choices		Model P	roperties	Time Complexity		
		Network Type	Causal	Causal Co	onsistency	Sampling	Evaluation	
	Tetwork Type		Asumption	$\mathbf{u} \to \mathbf{x}$	$\mathbf{x} \to \mathbf{u}$	Sumpting	2,	
($\mathbf{u} \rightarrow \mathbf{x}$	Generative	Ordering	X	X	$\mathcal{O}(L)$	$\mathcal{O}(dL)$	
Flow direction	u 'A	Generative	Graph G	1	×	$\mathcal{O}(L)$	$\mathcal{O}(dL)$	
		Abductive	Ordering	×	×	$\mathcal{O}(dL)$	$\mathcal{O}(L)$	
	$\mathbf{x} ightarrow \mathbf{u}$ -	Abductive $(L > 1)$	Graph G	X	×	$\mathcal{O}(dL)$	$\mathcal{O}(L)$	
		Abductive $(L = 1)$	Graph G	1	1	$\mathcal{O}(dL)$	$\mathcal{O}(L)$	

Network design

3. Ensure causal consistency wrt. the true SCM.

	-	Design Choices		Model P	roperties	Time Complexity		
		Network Type	Causal	Causal Co	onsistency	Sampling	Evaluation	
	rotwork Type		Asumption	$\mathbf{u} \to \mathbf{x}$	$\mathbf{x} \rightarrow \mathbf{u}$	Sumpring	2 · uruution	
(,	$1 \rightarrow \mathbf{x}$	Generative	Ordering	X	X	$\mathcal{O}(L)$	$\mathcal{O}(dL)$	
Flow direction		Generative	Graph G	1	X	$\mathcal{O}(L)$	$\mathcal{O}(dL)$	
		Abductive	Ordering	X	X	$\mathcal{O}(dL)$	$\mathcal{O}(L)$	
	$\mathbf{x} ightarrow \mathbf{u}$ -	Abductive $(L > 1)$	Graph G	X	X	$\mathcal{O}(dL)$	$\mathcal{O}(L)$	
	<u> </u>	Abductive $(L = 1)$	Graph G	1	1	$\mathcal{O}(dL)$	$\mathcal{O}(L)$	

Qualitative results

Qualitative results

Qualitative results

Quantitative results

		Performance			Time Evaluation (µs)			
Dataset	Model	Observ.	Interv.	Counter.	Training	Evaluation	Sampling	
Fork LIN	CausalNF CAREFL [†] VACA	0.00 _{0.00} 0.00 _{0.00} 8.75 _{0.73}	$\begin{array}{c} 0.03_{0.01} \\ 0.04_{0.01} \\ 0.87_{0.02} \end{array}$	$\begin{array}{c} 0.01_{0.00} \\ 0.02_{0.00} \\ 1.43_{0.02} \end{array}$	$\begin{array}{r} 0.52_{0.05} \\ 0.60_{0.17} \\ 45.84_{4.64} \end{array}$	$\begin{array}{c} 0.59_{0.08} \\ 0.78_{0.16} \\ 34.66_{2.39} \end{array}$	$\frac{1.57_{0.57}}{2.39_{1.06}}$ $73.29_{4.70}$	
LargeBD NLIN	CausalNF CAREFL [†] VACA	$\frac{1.51_{0.04}}{1.51_{0.05}}$ $53.66_{2.07}$	$\begin{array}{c} 0.02_{0.00} \\ 0.05_{0.01} \\ 0.39_{0.00} \end{array}$	$\begin{array}{c} 0.01_{0.00} \\ 0.08_{0.01} \\ 0.82_{0.02} \end{array}$	$\begin{array}{r} 0.52_{0.10} \\ 0.84_{0.47} \\ 164.92_{11.10} \end{array}$	$\frac{0.60_{0.17}}{1.18_{0.17}}$ $137.88_{15.72}$	3.05 _{0.66} 8.25 _{1.29} 167.94 _{25.75}	
Simpson SYMPROD	CausalNF CAREFL [†] VACA	0.00 _{0.00} 0.00 _{0.00} 13.85 _{0.64}	$\begin{array}{c} 0.07_{0.01} \\ 0.10_{0.02} \\ 0.89_{0.00} \end{array}$	$\begin{array}{c} 0.12_{0.02} \\ 0.17_{0.04} \\ 1.50_{0.04} \end{array}$	$\begin{array}{r} 0.59_{0.17} \\ 0.49_{0.15} \\ 49.26_{4.09} \end{array}$	$\begin{array}{c} 0.60_{0.11} \\ 0.81_{0.19} \\ 37.78_{3.41} \end{array}$	$\frac{1.51_{0.30}}{1.91_{0.33}}$ $79.20_{14.60}$	

12 datasets in the paper!

		Performance			Time Evaluation (µs)			
Dataset	Model	Observ.	Interv.	Counter.	Training	Evaluation	Sampling	
Fork LIN	CausalNF CAREFL [†] VACA	$\begin{array}{c} 0.00_{0.00} \\ 0.00_{0.00} \\ 8.75_{0.73} \end{array}$	$\begin{array}{c} 0.03_{0.01} \\ 0.04_{0.01} \\ 0.87_{0.02} \end{array}$	$\begin{array}{c} 0.01_{0.00} \\ 0.02_{0.00} \\ 1.43_{0.02} \end{array}$	$\begin{array}{r} 0.52_{0.05} \\ 0.60_{0.17} \\ 45.84_{4.64} \end{array}$	$\frac{0.59_{0.08}}{0.78_{0.16}}$ $34.66_{2.39}$	$\frac{1.57_{0.57}}{2.39_{1.06}}$ $73.29_{4.70}$	
LargeBD NLIN	CausalNF CAREFL [†] VACA	$\frac{1.51_{0.04}}{1.51_{0.05}}$ $53.66_{2.07}$	$\begin{array}{c} 0.02_{0.00} \\ 0.05_{0.01} \\ 0.39_{0.00} \end{array}$	$\begin{array}{c} 0.01_{0.00} \\ 0.08_{0.01} \\ 0.82_{0.02} \end{array}$	0.52 _{0.10} 0.84 _{0.47} 164.92 _{11.10}	$\frac{0.60_{0.17}}{1.18_{0.17}}$ $137.88_{15.72}$	3.05 _{0.66} 8.25 _{1.29} 167.94 _{25.75}	
Simpson symprod	CausalNF CAREFL [†] VACA	$\begin{array}{c} 0.00_{0.00} \\ 0.00_{0.00} \\ 13.85_{0.64} \end{array}$	$\begin{array}{c} 0.07_{0.01} \\ 0.10_{0.02} \\ 0.89_{0.00} \end{array}$	$\begin{array}{c} 0.12_{0.02} \\ 0.17_{0.04} \\ 1.50_{0.04} \end{array}$	$\begin{array}{r} 0.59_{0.17} \\ 0.49_{0.15} \\ 49.26_{4.09} \end{array}$	$\begin{array}{c} 0.60_{0.11} \\ 0.81_{0.19} \\ 37.78_{3.41} \end{array}$	$\frac{1.51_{0.30}}{1.91_{0.33}}$ $79.20_{14.60}$	

12 datasets in the paper!

Quantitative results

		Performance			Time Evaluation (µs)			
Dataset	Model	Observ.	Interv.	Counter.	Training	Evaluation	Sampling	
Fork LIN	CausalNF CAREFL [†] VACA	0.00 _{0.00} 0.00 _{0.00} 8.75 _{0.73}	$\begin{array}{c} 0.03_{0.01} \\ 0.04_{0.01} \\ 0.87_{0.02} \end{array}$	$\begin{array}{c} 0.01_{0.00} \\ 0.02_{0.00} \\ 1.43_{0.02} \end{array}$	$\begin{array}{r} 0.52_{0.05} \\ 0.60_{0.17} \\ 45.84_{4.64} \end{array}$	$\begin{array}{c} 0.59_{0.08} \\ 0.78_{0.16} \\ 34.66_{2.39} \end{array}$	$\frac{1.57_{0.57}}{2.39_{1.06}}$ $73.29_{4.70}$	
LargeBD NLIN	CausalNF CAREFL [†] VACA	$\frac{1.51_{0.04}}{1.51_{0.05}}$ $53.66_{2.07}$	$\begin{array}{c} 0.02_{0.00} \\ 0.05_{0.01} \\ 0.39_{0.00} \end{array}$	$\begin{array}{c} 0.01_{0.00} \\ 0.08_{0.01} \\ 0.82_{0.02} \end{array}$	0.52 _{0.10} 0.84 _{0.47} 164.92 _{11.10}	$\frac{0.60_{0.17}}{1.18_{0.17}}$ $137.88_{15.72}$	3.05 _{0.66} 8.25 _{1.29} 167.94 _{25.75}	
Simpson symprod	CausalNF CAREFL [†] VACA	$\begin{array}{c} 0.00_{0.00} \\ 0.00_{0.00} \\ 13.85_{0.64} \end{array}$	$\begin{array}{c} 0.07_{0.01} \\ 0.10_{0.02} \\ 0.89_{0.00} \end{array}$	$\begin{array}{c} 0.12_{0.02} \\ 0.17_{0.04} \\ 1.50_{0.04} \end{array}$	$\begin{array}{r} 0.59_{0.17} \\ 0.49_{0.15} \\ 49.26_{4.09} \end{array}$	$\begin{array}{c} 0.60_{0.11} \\ 0.81_{0.19} \\ 37.78_{3.41} \end{array}$	$\frac{1.51_{0.30}}{1.91_{0.33}}$ $79.20_{14.60}$	

12 datasets in the paper!

German Credit

	Logistic classifier				SVM classifier			
	full	unaware	fair x	_	full	unaware	fair x	
F1-score Accuracy	$72.28_{6.16} \\ 67.00_{3.83}$	$72.37_{4.90} \\ 66.75_{2.63}$	$59.66_{8.57} \\ 54.75_{5.91}$	7 6'	6.04 _{2.86} 9.50 _{3.11}	$76.80_{5.82} \\ 71.00_{3.83}$	68.28 _{5.74} 59.25 _{2.99}	

[1] Kusner, Matt J., et al. "Counterfactual fairness." Advances in neural information processing systems 30 (2017).

8	Logistic classifier				SVM classifier			
	full	unaware	fair x	full	unaware	fair x		
F1-score	72.286.16	72.374.90	59.66 _{8.57}	$76.04_{2.86}$	76.80 _{5.82}	$68.28_{5.74}$		
Accuracy	67.00 _{3.83}	66.75 _{2.63}	$54.75_{5.91}$	69.50 _{3.11}	71.00 _{3.83}	59.25 _{2.99}		
Unfairness	$5.84_{2.93}$	$2.81_{0.72}$	$0.00_{0.00}$	6.65 _{2.45}	$2.78_{0.40}$	$0.00_{0.00}$		

$$\begin{bmatrix} \text{Causal} \\ \text{Normalizing} \\ \text{Flow} \end{bmatrix} \longrightarrow \mathbb{E}_{\mathbf{x}^{f}} \left[P(\kappa(\mathbf{x}^{\text{cf}}) = 1 \mid do(\mathbf{x}_{S} = 1), \mathbf{x}^{f}) - P(\kappa(\mathbf{x}^{\text{cf}}) = 1 \mid do(\mathbf{x}_{S} = 0), \mathbf{x}^{f}) \right]$$

[1] Kusner, Matt J., et al. "Counterfactual fairness." Advances in neural information processing systems 30 (2017).

	Logistic classifier				SVM classifier			
	full	unaware	fair x	fair u	full	unaware	fair x	fair u
F1-score Accuracy Unfairness	$72.28_{6.16} \\ 67.00_{3.83} \\ 5.84_{2.93}$	$72.37_{4.90} \\ 66.75_{2.63} \\ 2.81_{0.72}$	$59.66_{8.57} \\ 54.75_{5.91} \\ 0.00_{0.00}$	$\begin{array}{c} 73.08_{4.38} \\ 66.50_{3.70} \\ 0.00_{0.00} \end{array}$	$76.04_{2.86} \\ 69.50_{3.11} \\ 6.65_{2.45}$	$76.80_{5.82} \\ 71.00_{3.83} \\ 2.78_{0.40}$	$\begin{array}{c} 68.28_{5.74} \\ 59.25_{2.99} \\ 0.00_{0.00} \end{array}$	$\begin{array}{c} 77.39_{1.52} \\ 69.75_{1.26} \\ 0.00_{0.00} \end{array}$

[1] Kusner, Matt J., et al. "Counterfactual fairness." Advances in neural information processing systems 30 (2017).

Concluding remarks

- Causal normalizing flows are a **natural choice** to learn SCMs.
- We provide **theoretical** results, and practical ways to:
 - efficiently capture a causal model, and
 - **exactly** perform causal inference.
- Lots of interesting future work! Get in touch!
 - Confounders?
 - Non-bijective generators?
 - Better loss functions?
 - Misspecifications?
 - Applications?

Today at Poster **#822** 5:15 p.m. – 7:15 p.m

Questions?

Does it work?

Theoretically: App. C \Rightarrow Intuition: the u_i of the intervened value is set to cancel out the influence of its parents.

Structural Causal Models

causal generator exogenous distribution

An SCM is a tuple $\mathcal{M} = (\mathbf{\tilde{f}}, P_{\mathbf{u}})$ describing a data-generating process to transform exogenous variables \mathbf{u} into (observed) endogenous variables \mathbf{x} .

 $\mathbf{u} \coloneqq (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_d) \sim P_{\mathbf{u}}, \qquad \mathbf{x}_i = \tilde{f}_i(\mathbf{x}_{\mathrm{pa}_i}, \mathbf{u}_i), \qquad \text{for } i = 1, 2, \dots, d.$

We can use SCMs for causal inference, i.e., reason about what-if questions: How the world would have been if X happened.

 $\begin{array}{c} \mathbf{x}_{2} = \tilde{f}_{2}(\mathbf{x}_{1}, \mathbf{u}_{2}) \\ \mathbf{x}_{3} = \tilde{f}_{3}(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{u}_{3}) \end{array}$

 $x_4 = \tilde{f}_4(x_3, u_4)$

 $\{x_1, x_2, x_3, x_4\}$

JNIVERSITÄT

Causal normalizing flows: from theory to practice

An NF is a tuple $(T_{\theta}, P_{\mathbf{u}})$ that express the probability density of observed variables **x** as the transformation of base variables **u**:

(neural net) distribution

 $T_{\theta}(\mathbf{x}) \Rightarrow \mathbf{u} \sim P_{\mathbf{u}}$ with log-density $\log p(\mathbf{x}) = \log p(T_{\theta}(\mathbf{x})) + \log |\det(\nabla_{\mathbf{x}} T_{\theta}(\mathbf{x}))| \leq 1$

Autoregressive NFs (ANFs) model each layer of the network as:

base

 $\mathbf{z}_{i}^{l} \coloneqq \tau_{i}^{l}(\mathbf{z}_{i}^{l-1}; \mathbf{h}_{i}^{l}), \text{ where } \mathbf{h}_{i}^{l} \coloneqq c_{i}^{l}(\mathbf{z}_{1:i-1}^{l-1})$ conditioner transformer (str. monotonic) (only takes prev. inputs) Jacobian

Learn $\boldsymbol{\theta}$ via MLE!

Normalizing flows

flow

SCMs as TMI maps

We can always write an SCM as a TMI map.

1. Unroll the SCM.

 $\begin{cases} \mathbf{x}_1 = \tilde{f}_1(\mathbf{u}_1) \\ \mathbf{x}_2 = \tilde{f}_2(\mathbf{x}_1, \mathbf{u}_2) = \tilde{f}_2(\tilde{f}_1(\mathbf{u}_1), \mathbf{u}_2) \\ \mathbf{x}_3 = \tilde{f}_3(\mathbf{x}_1, \mathbf{x}_2, \mathbf{u}_3) = \tilde{f}_3(\tilde{f}_1(\mathbf{u}_1), \tilde{f}_2(\tilde{f}_1(\mathbf{u}_1), \mathbf{u}_2), \mathbf{u}_3) \\ \mathbf{x}_4 = \tilde{f}_4(\mathbf{x}_3, \mathbf{u}_4) = \tilde{f}_4(\tilde{f}_3(\tilde{f}_1(\mathbf{u}_1), \tilde{f}_2(\tilde{f}_1(\mathbf{u}_1), \mathbf{u}_2), \mathbf{u}_3), \mathbf{u}_4) \end{cases}$

2. "Monotonize" the SCM.

Always possible. How? Apply a Knöthe-Rosenblatt (KR) transport following the causal graph:

 $K_m(x_{1:m-1}, x_m) = F_{\nu}^{-1} \{ F_{\mu}(x_m | x_{1:m-1}) \mid K_1(x_1), \dots, K_{m-1}(x_{1:m-1}) \}$

If $P_{\mathbf{u}}$ is a standard uniform distribution \Rightarrow Darmois construction.

Network designs

- Generative networks:
 - \circ Defined from **u** to **x**.
 - The conditioner only takes the input according to **G**.

$$\mathbf{z}_i^{l-1} = \tau_i(\mathbf{z}_i^l; \mathbf{h}_i^{l-1}), \quad \text{where} \quad \mathbf{h}_i^{l-1} = c_i(\mathbf{z}_{\mathrm{pa}_i}^l)$$

- Abductive networks:
 - Defined from **x** to **u**.
 - The conditioner only takes the input according to **G**.

$$\mathbf{z}_{i}^{l} = \tau_{i}(\mathbf{z}_{i}^{l-1}; \mathbf{h}_{i}^{l}), \text{ where } \mathbf{h}_{i}^{l} = c_{i}(\mathbf{z}_{\mathrm{pa}_{i}}^{l-1})$$

Usual implementation

The do-operator simulates an *external intervention* in the system, breaking any causal relationships going to the intervened node.

The usual implementation yields an intervened SCM with a new set of equations, $\mathcal{M}^{\mathcal{I}} = (\mathbf{\tilde{f}}^{\mathcal{I}}, P_{\mathbf{u}})$

However, it only works for the recursive formulation.

Our implementation

We propose to instead update $P_{\mathbf{u}}$ to put mass only on those values of \mathbf{u} that yield the intervened value, $\mathcal{M}^{\mathcal{I}} = (\mathbf{\tilde{f}}, P_{\mathbf{u}}^{\mathcal{I}})$.

$$p^{\mathcal{I}}(\mathbf{u}) = \delta\left(\left\{\tilde{f}_i(\mathbf{x}_{\mathrm{pa}_i}, \mathbf{u}_i) = \alpha\right\}\right) \cdot \prod_{j \neq i} p_j(\mathbf{u}_j)$$

1: function SAMPLEINTERVENEDDIST
$$(i, \alpha)$$

2: $\mathbf{u} \sim P_{\mathbf{u}}$
3: $\mathbf{x} \leftarrow T_{\boldsymbol{\theta}}^{-1}(\mathbf{u})$
4: $\mathbf{x}_i \leftarrow \alpha$
5: $\mathbf{u}_i \leftarrow T_{\boldsymbol{\theta}}(\mathbf{x})_i$
6: $\mathbf{x} \leftarrow T_{\boldsymbol{\theta}}^{-1}(\mathbf{u})$
7: return \mathbf{x}
8: end function

The multiple representations of SCMs

Extra

