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1. Model each variable individually:
E.g.: a linear function, spline, GP1, NN2, …

⨯ Independent functions ✓ Straightforward

⨯ No amortization ✓ Causally consistent

⨯ Seq. error propagation ✓ Easy do-operator
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[1]  Karimi, Amir-Hossein, et al. "Algorithmic recourse under imperfect causal knowledge: a probabilistic approach." Advances in neural information processing systems 33 (2020): 265-277.
[2] Parafita, Álvaro, and Jordi Vitrià. "Estimand-Agnostic Causal Query Estimation With Deep Causal Graphs." IEEE Access 10 (2022): 71370-71386.
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2. Model the SCM with a Deep Neural Network.
E.g.: VACA,1 CAREFL,2 …

✓ Expressive ⨯  Without guarantees

✓ Parameter amortization ⨯ Complex NN training

✓ Parallel computations ⨯ Inexact 
do-operator

[1]  Karimi, Amir-Hossein, et al. "Algorithmic recourse under imperfect causal knowledge: a probabilistic approach." Advances in neural information processing systems 33 (2020): 265-277.
[2] Parafita, Álvaro, and Jordi Vitrià. "Estimand-Agnostic Causal Query Estimation With Deep Causal Graphs." IEEE Access 10 (2022): 71370-71386.
[3] Sánchez-Martin, P., M. Rateike, and I. Valera. “VACA: Designing Variational Graph Autoencoders for Causal Queries”. Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no.
[4] Khemakhem, Ilyes, et al. "Causal autoregressive flows." International conference on artificial intelligence and statistics. PMLR, 2021.
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Causal Normalizing Flows:

✓ Straightforward

✓ Causally consistent

✓ Easy do-operator

✓ Expressive

✓ Parameter amortization

✓ Parallel computations
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Interventional/counterfactual data

1. Generate observational data.

    2. Generate interventional data.

    3.    Generate counterfactual data.

1. Fit the observed data accurately.

    2. Identify the exogenous variables.

    3.   Ensure causal consistency wrt. the true SCM.

Capabilities Objectives
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Invertible & differentiable 
generators

No feedback loops Causal sufficiency

Causal graphStructural equations Causal ordering

Causal normalizing flows: from theory to practice

induces induces
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ANFs:
● Invertible differentiable neural networks.
● Transform random variables,                            .
● Autoregressive and monotonic. 
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ANFs are TMI maps 
and 

universal approximators of any other TMI map.
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1. Fit the observed data accurately.
SCM→Structural Causal Model

ANFSCM

TMI

ANF→Aut. Normalizing Flow
TMI→Triangular Monotonic Incr. Map

Structural equations 
can be always 

unrolled & monotonized
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- Family of TMI maps with fully-factorized distributions.

    2. Identify  the exogenous variables.
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[1]  Xi, Quanhan, and Benjamin Bloem-Reddy. "Indeterminacy in generative models: Characterization and strong identifiability." International Conference on Artificial Intelligence and Statistics. PMLR, 2023.
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- Family of TMI maps with fully-factorized distributions.

    2. Identify  the exogenous variables.
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[1]  Xi, Quanhan, and Benjamin Bloem-Reddy. "Indeterminacy in generative models: Characterization and strong identifiability." International Conference on Artificial Intelligence and Statistics. PMLR, 2023.
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In theory…
ANF + causal ordering is enough.

… but in practice …
Neural networks ❤ local optima.

Wait!
With G we can design a causally consistent network!
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Concluding remarks
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● Causal normalizing flows are a natural choice to learn SCMs.

● We provide theoretical results, and practical ways to:
○ efficiently capture a causal model, and
○ exactly perform causal inference.

● Lots of interesting future work! Get in touch!
○ Confounders?
○ Non-bijective generators?
○ Better loss functions?
○ Misspecifications?
○ Applications?

TMI

SCM

ANFs 
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arxiv: 2306.05415

psanch21/causal-flows

About to 
graduate!

Hiring!

Today at Poster #822

5:15 p.m. — 7:15 p.m

https://arxiv.org/abs/2306.05415
https://github.com/psanch21/causal-flows
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Theoretically: App. C ⇒ Intuition: the u
i
 of the intervened value is set to cancel out the influence of its parents.

Empirically:

04.08.23
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An SCM is a tuple                            describing a  data-generating process to
transform exogenous variables u into (observed) endogenous variables x.

causal generator exogenous 
distribution

● Causal graph ● Adj. matrix ● Causal ordering

We can use SCMs for causal inference, i.e., reason about what-if questions:
How the world would have been if X happened.

04.08.23



Normalizing flows

61Causal normalizing flows: from theory to practice

An NF is a tuple                 that express the probability density of observed 
variables x as the transformation of base variables u:

flow
(neural net)

base 
distribution

Learn       via MLE!

Autoregressive NFs (ANFs) model each layer of the network as: 

transformer
(str. monotonic)

conditioner
(only takes prev. inputs)

Jacobian

Jacobian

04.08.23



SCMs as TMI maps
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We can always write an SCM as a TMI map.

1. Unroll the SCM.

Acyclic

2. “Monotonize” the SCM.

Always possible. How? Apply a Knöthe-Rosenblatt (KR) transport following the causal graph:

If       is a standard uniform distribution ⇒ Darmois construction.

04.08.23



● Generative networks:
○ Defined from u to x.
○ The conditioner only takes the input according to G.

● Abductive networks:
○ Defined from x to u.
○ The conditioner only takes the input according to G.

Network designs
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Usual implementation
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The do-operator simulates an external intervention in the system,
breaking any causal relationships going to the intervened node.

The usual implementation yields an intervened SCM with a new set 
of equations,                                  .

However, it only works for the recursive formulation.

04.08.23
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We propose to instead update        to put mass only on those 
values of u that yield the intervened value,                              .

04.08.23



The multiple representations of SCMs
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