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VAEs and heterogeneous data

X ϕ Z θ η pθ(X|Z) ELBO

qθ(Z|X)

pθ(X |z) = ∏D
d=1 pd(xd |z)

Implicit assumption. We want to learn all features equally well.

Problem. During training, VAEs prioritize some features over others.

Discrete data. Continuous data.
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Multiobjective architectures

Heterogeneous VAEs Multitask Learning

w1 η1

X ϕ Z θsh y w2 η2 pθ(X|Z) ELBO

wD ηD

qθ(Z|X)

... ...

w1 L1

X ϕ y w2 L2

∑
k Lk

wD LK

... ...

Want: Model all features equally well. Learn all tasks equally well.

Problem: Feature overlooking. Negative transfer.

Shared: ϕ and θsh. ϕ.

Exclusive: w1,w2, . . . ,wK. w1,w2, . . . ,wK.

Updating ϕ:

∇ϕpθ∇pθ ELBO =

= ∇ϕy

(∑
d

∇yηd∇ηd pθ

)
︸ ︷︷ ︸

feature overlooking

∇pθ ELBO
∇ϕL = ∇ϕy

(∑
k

∇yLk

)
︸ ︷︷ ︸

negative
transfer
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Tackling feature overlooking

Heterogeneous VAEs Multitask Learning

w1 η1

X ϕ Z θsh y w2 η2 pθ(X|Z) ELBO

wD ηD

qθ(Z|X)

... ...

w1 L1

X ϕ y w2 L2

∑
k Lk

wD LK

... ...

Conflicting gradients

Differences between gradient among tasks/features lead to poor
gradient directions, and thus shared-parameters updates.

These conflicts are restricted to the green squares. We can leverage existing

MTL solutions to alleviate feature overlooking in heterogeneous VAEs.
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Qualitative results

Vanilla - discrete. MOO - discrete.

Vanilla - continuous. MOO - continuous.
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Conclusions

Despite their principled origins, VAEs are
not different from other neural models.

Similar assumptions = similar problems.
We can leverage existing solutions.

If properly trained, VAEs can be incredibly
effective at modeling heterogeneous data.

Want to stay tuned?
Follow us on 7!

Paper at adrian.javaloy.com/uploads/movae/ymiw-paper.pdf.
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